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1.  IMTRMLJCTIUN 

proposed  by  h Ll^ is bisee ori a 
Oxford in the Fail of 

sc i fent i sts  and  is  |n 

I OT i c of Dana Scott, 
i o' 1969, for reasoning about computable functions 
reient this  ionic,  essentially as Scott himself 

more  fani iiar  to  computer 
any case easier to worK with. Sac+ion "^ tK«n 

descr.bes the machine  I np I ementat I on  of  a proof-cheL^'^oJ  Jhe 
ie typed lovnc, we refer te Both the logic and the implementation as th 

left« for computrhie functions, or typed LCF, or Just LCr? 

It is hopea that a potential user of the system can, «,,-, Tn 
heir ot the Hxamrip cf section 3.1 and with section 4. get onto Ih 
macn.no w.thout rn^in.j tht whole cf this document 

th the 
e 

Further discussion of LCF and examples 
can ^e founi in th« foiiowiny papers: 

MilrPr.K.,  "implementation  ano 
computLtle functions", Fror. AO 

applic a t i o n s 
Conference 

of  Its aopI ications 

of  Scott's logic for 
Proving Assertions „ ,, .,.,«,,«.,, , rrwR, ALv  Lonrerence  on Provino  A^sertlnn. 

TSllVlTrT'  '"" ',eXiC0 S"te l'ni"r5i"'  '" truces! /"ZVC 

WtyhPlUth,R, anc^ "imer, "F'rogram 
mechanized  Iruic",  Proc,  USA 
19;'2 (to a^pea i-) , 

sementics and  correctness  in a 
Japan Computer Conference, Tokyo, Oct 

Mllrer and ;JeyhrHuch, "Proving compiler correctness In 
io'j.c".  Machine  Indulgence 7, ed. Ü.   Michie, Edinb 
Pr^ss 1972 (to appear) . 

a  mechanized 
upgh Univepslty 

Newey.M,, "AXiuns and 
LCF",   forthcoming 
University, 1972, 

Theorems for integers, lists anj finite sets in 
AI  Memo,,  Computer  Science Dept,, 

We give no further referonres here; they mey be found 
paiers, 

Stanford 

In  the  above 



2,  THf LOGIC LIT 

Tynes 

At oottom "tr" and "ind" ar« tvoes. Further if Pi and P2 are tVoes 
then n*^)Ji a tyoe. We adopt xhe convention that - associates to 
tno riqnt and freyüontly onit rarenthesesJ thus we write Pi*n2-*P3 for 
(Pi#(^2«03)>, with each term of the logic there is an unambifluou« I y 
associated type,  For a term t we wrIte 

t»P 

to Tear tnat the type associated with t is &, Throughout we use 
Pf3l.P2,,., as mfltavnrlab I AS for types. 

Terrrs (iretavar 1 ab I os si t« si. tl. . . . ) 

The followinp are terns: 

IdentifiersCietavartables x,y) - sequences of upper or lower 

letters and -mits. we assurje that the type of each identifier 
is uniquely deterninod In sone manner. 

Applications - s(t) : ^2 . where  s:Pl-P2 and %*$%, 

Conditionals - (s-tl,t^) I H , where  s«tr and tl»t2:P, 

X-axpressions - CXx.sJ : Ul#fl| , where xr^i and s:P2. 

«»-express i ons - [ax.s] : S , where x»s:P, 

Tnis strict syntax is relaxed  In  the  machine  Impjenentation  (see 
Section 6)   to alln^ a saving ot parentheses and brackets. 

The intendaj interpretation of the «-expression [«f.s] is the 
miniiral fixed-point of the function or functional denoted by  tkf a1 

For sxanrple: 

^f.C\x.(p(x)-.f(a(x)),r5(x))]] 

denotes tne function 4nf\r\*d   recursively as follows: 

f(x) <r if o(x> tnon f(a(x)) else b{x), 



Constants 

Tne identiMers TTiFf denote trufivalues true and false. \ju denotes 
tha totally undefined onject of any type: In particular» the 
undef i ned trJt^va|ja. 

Atorric well-formed for'nula'' (a^ffs) 

The following 's an awff: 

i « t 

where s ana t «re of ti*? same type. The intended i nteroretat ion of 
set is» roughly, tnat t Is at least as well defined as» and 
consistent with» si 

Well-forced formulae (wffs) (metavarlao|as P»Q»P1,01, . ,, ) 

wffs are sets of zoro or ^ore awffs, written as lists with separating 

comrras,  Thay d-e interoreted as conjunctions. We use 

to aobrevlate s^t, tcs . 

Sentences 

Sentences are !no I Ica11ons between wffs, wrlttan 

P I- Q 

or. 'f P is emnty. just 

I- a 

Proofs 

A  soof  lg a saaJe^c^ of sentences» each being derived from zero or 

more preceding sentences by a rule of inference, 



Infe rence rJ I es 

Let us write P{s/x) or t<s/x) for the result of substituting 9 for 
all free occurrences of x in p or t, after first changing bound 
variables In P or t so t^at no variable free in s becomes bound by 
the substitution, »Je have not stated conditions on the types of 
Identifiers ana terns •vith each rule; any consistent assignment of 
tyct«? Is acini ss io I e. 

INCL (J a subset of P) 

CO Jw 

CUT 

01 

HI P3 

^2 

P  I-  21JQ2 

PI  I-  P2    P2  I-  ^3 

c   ^ULES   •*••* 

APPL 
si c s2 t<sl) c t(s2) 

RtFL 

TRANS 

f        I-   s = s 

P   I-   si c s2   P 

p   I-   si e s3 

si? c s3 

• »<*#*  uu  ^ULCS 

MI'Jl 
I-   U'J c s 

MIN3 
I-   ULKs) ' ÜU 



CONDT 

CONDITIONAL RULES 

TT ■» s, t = 8 

CONDU 
I-   UU - s»t = UU 

COMDF 
FF - s»t = t 

•••••   X   RULES   ••••• 

P   I-   set 
ABSTR     •••••••  (x not 'rte In P) 

P   I-   CXx.sJ c CXx.t3 

CONV 

ETACCNV 

ÜXx.3](t)  = S<t/X) 

CXK,y(x> 3 = y 
(x and y distinct) 

CASF.S 

♦•»♦»   TRUTH   RULE   •••< 

P, s=TT  I-  Q     P, siUU 

P  I- 

Q     P, s=FF  I-  0 

or   RULES 

FIXP 

INDUCT 

I-   [«x.s] 5 s<C0x.s3/x> 

P  |-  Ü(UU/x)     P, Q  I QCt/x) 

<x not free In P) 
Q([«x,t3/x) 



3.  THE MACHINE IMPLEMENTATION OF LCF 

We now dascrloe the machine version of the logic  of  Section 

2, and how to use It interactively on the machine. 

The user h«| available four groups of commands« 

• Rules of inference - to generate new sentences or steps 

fro-n zero or more previous steps. (Section 3.2) 

• Goal Or!«nted Commands - to specify and attack goals 

and subgoais. (section 3.3) 

• Miscellaneous - mainly to do with displaying or filing 
parts or all of the proof so far, and the goals. (Section 3.4) 

• Commands for axioms and theorems - to enable the user to create 
axiom systems, to orova and file theorems in these «^tems, end 
later to recall and instantiate those theorems. (Section 3.7) 

pefore oescrlolng the commands In detail, and  the  syntax  of  wffs. 

terrrs, etc, it may oe helnful to see an example. 

3,1  An Example 

of LCF by * aimole Let us hnroduce the machine version of LCF by. a s mo * 
exa-role 'wSich. although short, exhibits many of Jhe features. t Is 

t Dreof of a version of recursion I nduct i on. whl ch 8*at9; *hJ* .,' f. ^ 
*, oeflned recursively and G (another function) satisfies F • 
recursive definition %h*n FcG. In other words, we prove that F Is 
the »rininal fixed Point of Its defining eguation, 

After  Initialization  (see  Section  4),  the system types 5 

»citerisk" is a iUflal to the user to  start  a  proof.   In  fact.  5 
j;   11!  ar^  al/ays ?he signal for the user to continue ^ 3 proo 
Thus, ir wnat follows the user's contribution may be distinguished by 
belrg  Preceded  by    we  explain each  user  and machine 
contribution on the right of a vertical line. 

»»«■••ASSUME  FiC«F,FüN F3» SiFUN G; 
IThe user assumes a wff (a sequence of atomic wffs 
iseparated oy commas, where each atomic wff has  =  or 
|t Infixed between two terms).  Every user 
Icommanc ends with a semicolon.  Detailed syntax Is 
Igiven later - but note in particular that application 
Imay be represented (sonnimes) by Juxtaposition as In 
l"FUN G" to save parentheses, ^ote also that F occurs both 

Ifree and o0\jr\ö   <by 3') w'thoUt confusion. 
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2  G = FUMG)  (2) 

iThe machine separates the assumption Into two sentences, 
Igivlng each a stepnumber.  Every sentence which the 
ImachJne generates will have a stepnumber, and will consist 
of a  wff  followed by a list of stepnumbers of assumptions 
ion which the  wff  depends.  A sentence 
I 
I       n  ?  S 
I 
Iwnere P is a wff ard S a list of stepnumbers is the 
lenalogue in LCF of the sentence 
I 
I      Q  j-  P 
I 
lof pure LC-, where Q  Is the conjunction of assumptions 
idesignated by s,  Each of steps 1 and 2 above thus 
•represents an Instance of p  |.  p, which is a special 
lease of the Inclusion rule of Section 2, 

••»••GOAL  FcG; 

IThe user states his goal, but does not attack It yet. 
jHt right list several goals before attacking any of themj 
iin each case the machine w|li simple give a goal number: 

NEWGOAL *!  FcG 

iGoal niimbers are distinguished from stepnumbers by #. 

»»»»•TRY 1 INDUCT 1; 

IThe user wants to attack CQALl using the tactic of 
I induction on Step 1 - which is (as it must be) a 
Irecursive definition - I.e.  F=C«F.FUN(F)3. 

NEWGOAL tl^l  üücc 
NEWGOAL niU2     FUN(Fi)cG  ASSUME FlcQ 

IThe machine says that the Induction base and step 
Imust be established.  For the step It picks an arbitrary 
I Identifier not used previously (actually for mnemonic reasons 
it picks something which only differs from the Instantiated 

Ibound varlaoie In Its numerical suffix), 

IWe now have two goals generated by the machine, at 
a lower level,  The user need not - but probably will - 
Ichoose to prove *1 by proving #1#1 and #1«2, 

•TRY x; 



lUser chooses to attack #l#l first.  Ha need (and must) 
lon|y raf®r to the goal by the last Intagar In Its goal 
Inumber,  This t'"»» he doesn't state a tactic - he Knows 
Ihow to Drove It himself - so the machine merely steos down 
la level in the goal tree and waits. Actually, ha could 
luse the slMPL tactic (see Section 3.3)» since this 
Itactic notices Instances of MINI and would therefore 
leave the user his next two commands. 

»MINI G> 

3  UUeG 

iThe user notes that the subooal uucG can be proved 

Iby the first minimality rule (see Section 2)» so ca 
lit with the aoprooplate term - G - as parameter. 

IThe machine obediently generates the proper instance of 

Imlnlmaltty.  Notice that this sentence depends on no 
lassumptlons, 

»QED; 

IThe user can say QED  to tell the machine that he has 
Iproved exactly the goal under attack. 

GOAL  #1#1  PROVED.  BACK UP TO GOAL #1 

REMAINING SyBGOALS: 

2  rUN{Fl)eG  ASSUME  Fl.cC 

IThe machine agrees.  Now In general It will back up 

Ithg goal tree until it fin^s a goal some of whose su^goalt 
lhave not been proved.  It will remain at that level and list 
Ithese subgoals for the user to try. 

4  FlcG 

TRY 21 

lAgaln. us^r gives no tactic. 

(4) 

The machine makes the assumption of the goal for him (note 
that goal #i#i had no assumption), and waits. 

•♦#»»APPL FUN,4J 

M'Apply FUN to Step 4" - an Instance of application (see 
ISeotlon 2), 

5  FUN(Fl)cFUN(G)  (4) 
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•••••SYM 2; 

iTupn step ?.  arounrt p«ady for an aDplIcttlon of transitivity. 

6 FÜN(G)£G  (2! 

»♦•••TPANS 5,6; 

iNote   that   the  parameters  of   inference   rules  are  always 
Istepnumbers  or   ternis,   separated  by  eomnas. 

7 FUN(Fl)cG  (2 4) 

••♦••QECJ 

GOAL »1#2 PROVED,  BACK UP TO GOAL #1.  NO MORE SUBGOALS 

§  FcG  (2 1) 

l-----T^e machine hasn't finished yet» but not« that It 

Uiakes an explicit step to represent the proof of #1 (so 
(that tne whole sequence of steps» with all the goal 
Istructurs stripoed away, shall be a formal proof),  Note 
lalso thn assumptions of steo B, 

GOAL «1 PROVED.  PACK UP TO TOP LEVEL.  NO MORE SUBCOALS. 

MThere might have been more goals Msted at top level» 
Islnee the user can list many oefore attacking any), 

•♦•••SHOW PROOF RECIND; 

iThc user decides to keep his Proof on a file called RECIND. 
IT^e version kept Is shown below.  Notice that not every- 
ItMng which the user typed reappears?  In particular» the 
Istatement of a goal is not reproduced» only its trial, 

llf the user wanted instead to display his proof (at any 
Ipolnt» not Just at the end) he would just type "SHOw PROOF)" 

PROOF 

1 r I [«F,FUN(F)]  <1)     ASSUME. 
2 G 5 FUN(G)  (2)  ----  ASSUME. 

TRY #1  Fee INDUCT 1. 

TRY #1#1   UU c G 
3    UU c G  ---- MINI G. 

' 



u 
I  |TRY *1*2        rUNCFl) c G  ASSUME    Fl c G  . 

|4    Fl c G (4)   ASSUME. 
|f FUN(F1>   c   FUN(C)      (4)   ----   APPL   4   FUN. 
|6 FUM(G)   =   G     (^>       SYM   2. 
|7    FUN(F1> c G  (4 2)   TRANS 5 6, 

tf    F- c G  (2 1) INDUCT 3 7. 

3.2  Ru I es of Inferenc« 

Let us assume for t^*1 nonent the syntax classes <wff>, <awff> 

(atCTlc wff), <ter">. Details of these are in Section 3,6i but for 
now look only at the conventions given for syntax definitions at the 
start of t^at Section. 

We nee^ for the present 

<stepnBire> ::= <inteqer>l m9m
m I . <Identifier> ?< (♦!-) <inteoer> > 

<ter'»,naiTe> ;:= ?( : 31 : <steDname> ) ?( :<integer> > (:LlJR) 

<ranfle> ::= <steonaTe> I ?<stepnanie> : ?<steonane> 

In a <steoname> ,,-,, means "the last  step"»  "--" means  the 

last step but one, etc.. and for example ".DD-l" means the step 
preceding fiat labelled OD, See Section 3,4, the LABEL command, for 
how to laoel steps. 

A <ternnaTa> nay appear anywhere that a term can appear - for 

exarrple as a subterm of a term - and frequently saves typing long 
forirulae. We exolain ternnames by a few examples (suppose the last 
step was numbered 15) . 

:i5:i:R 
:-;iJR 
:15:R 
-;R 
:R 

:.0D:2.L 

:G:2:R 

a|i designate the term whlch occurs as 

right hand side In the first <awff> of Step 15. 

designates tha ins of the second <awff> 
of the step laoelied DD. 

designate the rhs of the second <awff> of 
the current goal - THISGOAL (See Section 3.3) 

The <rBn3e>s 12, 23!3f» 542, 50: denote respectively the 

single step 12, the steps 20 to 30 inclusively, the steps up to and 
incluOlrg 40, and the st9Ps fro-n 50 onwards. 
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We now |lst tn« rulas» with some examples. Note thtt In the 
machine Implementation there Is no tyoe-checkIng whatsoever. We rely 
on the user to use types cmslstently, 

ASSl'Ht <wff>> 
Lach <awff> AI in the <wff> Is given a new stepnumber ni, 
and the steps 

nl  Al(nl) 
n2  A2(n2) 

are generated. Each one 
Is a tautology* since a step p(n)  means Q I- P, where 
0 Is the <awff> at step number n. Thus the purpose of 
ASSUME is only to Introduce references for <awff>s, 
See Section 3,1 for examples of ASSUME. 

SASSUME <wff>; 

Like ASSUME, but every <awff> of the <wff> is henceforward 
treated .as a simplification rule (see section 3.5), 

INCL <stepname>. <integer>; 
Picks out an <awff>.  Example: 

115 Z=r(X,Y>, A=B, CXX.X3(Y)ei4 (13 7) 
|»«»»»INCL 15,2{ 
116 AiB (13 7) 

C6«J ,-,»<range>,_._ ; 

Forms conjunction of all steps In the <range>s. Example: 

15  pcQ.RES (12) 

117 r=G (12 4) 
|»»»»«C0NJ ---»-; 
118 pcQ, R=s, F=c (12 4) 

CUT <stepname>, <stepname>; 

If the steos referred to are P(ml,m2i,,> and Q(nl,n2i,.) 
respectivelyi where the m's and n's are stepnumbers, 
and If every <awff> referenced by the n's occurs as an 
<awff> in P, then the step Q(ml,m2»,.) Is generated, 
Examp|e: 
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I? ris (?) 
I   
112  ?cQ  (7) 
|    

115 fzO,   GCH  (14 2> 
l»»»»«CUT 15,12} 
116 pcQ  (14 2) 

HALF <8tepname>; 

Meplaces "=" by ***   in t^e first <awff>, and throws 
the rest away,  CxaTiplei 

16 XzG(X), Y=H(Y) (1 3) 
l»»»»«HALF 6» 
17 XcG(X)  (1 3) 

SYM <stepnane>j 

Interchanges the terms In the first <awff> (orovlded "=" occurs) 
and throws the rest away.  Example (continuing the previous): 

|##»«»SYM b; 
13  G(X)=X (1 3) 

TRANS <3tepname>, <stepname>» 
Looks at t^e f'rst <awff> in each <wff>,  if these are sl(r|c>s2. 
s2<ilc>s3 respectively» then slcs3 or sl=s3 Is generated, the 
assumptions being "unioned",  txamplei 

112  XiY(Z), PcQ (11 4) 

113 Y(Z)eY(X)  (4 9 
|#»#»#TRANS 12.13; 
114 XcY(X>  (11 4 9 

6) 

8) 

APPL {<steoname>l ,<terrc>, l<t«ni>»<st«pname>} > 

In the first case, applies both sides of the first <awff> of 
<stepnam8> to the <ter'n>s in sequence. 
In the secontl case, applies the <teri''> to both sides 
of the first <awff> of <stepname>,  Exampless 

Ilia  X = Y{Z), PcQ  (9 4) 
I APPL r,lCi; 
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111  r(X)iF(V(r))  (9 4) 
I     
\2?      rECXX.XJ.^cU  (11 4) 
l<»»«n»rtrPL 22, :-:2:RJ 
123  riQ) = [XX.;0(Q)  (11 4) 

AQSTR <stepnam8>, ,<ident Ifier># » 
noes X-abstraction on 1st <a^ff>.  The Identifiers 
»must not occ'Jr free In any of   the assumptions of the steo, 
ExampIe(cont'nJing the previous): 

 ABSTR  2;?,F; 
24 CXF.FaTCXF.CXX.XD]  (11 4) 

CASES     ) 

) 
INDUCTION ) 

Tnese «re no* ürBsent as inference rules» since it Is 

■ess tediojs to use their goal oriented versions (see 
Sectlo'"« "J,!), 

CQ?\IV i<steoname> |<ter'n>); 
Does all X-conversions In the <tPrm> or <steonRme>. ExamoleJ 

I 
114  B=CXX,X(X)]CXX.X(Y)3 
I cONV -; 
113  ?=Y(Y) 

Remark, the term In 14 violates the type structural but the 
system does not check thisi 

FTACONV <term>; 

Eta-converts t^e <term>, provided it has the form  CXx.s(x)3, 
with x not free in the tern s. Example (remember that 
F(X,Y) abbreviates  (F(X))(Y) ): 

|»*#»»ETAC0NV CXY. F(XiY)]; 
149  CXY. F(X,Y)3=F(X) 

EQUIV <stepname>,<3t8pname>; 

Looks at the first <awff> In each <wff>,  If these are slcs2, 
s2csl respectively, then slis2 is generated.  Example: 

16  x^Y. PiQ (12) 
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117 YcXi HcG (1 2) 
I EQUIV 16il7; 
118 X=Y  (12 1 ?) 

REFLl <tcrm>j 
Glv«s t = t wherfl t Is deslflnattd by the mtepm,  Exarrolei 

l*»#«»RErL X(XX)} 
119 XCXX) = XtXX) 

HETLZ <term>> 
Likg REFLl» but gives tct. 

MINI <tepm>; 

Uives UUct.  Examolei see Section 3.1 

MIN2  <t«rm>J 
Gives UU(t)~UU. Example (continuing the orevlous): 

I MIN2 :L; 
120 iJU(X(XX)) = UU 

CONDT <tepm>j 

Checks that the <term> t has form TT-»sl#s2 and if 
so generates t=sli  Example: 

I    
121 r(X) = TT-X,F(G<YIX)) (10) 
l»«»»»C0NDT :R; 
122 TT*X# F(C,(Y,X)) = X 

CONDF <term>! 

Checks that the <term>  t  has form FF'»slis2 and If 
so generates  tltti 

CONDU <term>» 
Checks t'tat the mtern  t  has form UU"»sl»s2 
and If so generates  t = JU, 

FIXP <8teDname>i 

Checks that the first <awff> is a recursive definition 
e.g.  siC«G.t]» and generates  s=t<s/G). Example: 
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l?3  F z   CaG.HCCXF.GCF)])^ 
I »••••Fix? 23; 
12^  F = H <CXFl.F<Fl>3) 

SUBST <stepname> ?( OCC ...,<integ8r>#  > IN {<steoname>|<t«rm>>i 
Let the first <st0pnam8> have tl S t2 as Its first <awff>f where 
$ stands for = in case (l)« and for = or e in case (2}! 

Case (i), If thsr» Is an <stepname> following "IM" i then t2 Is 
substituted for all occurrences designated by the <Integer>- 
list (or all occurrences» If no list) of tl In the <wff>. 

Case (M), if there is a <tern> s following "IN" then 
* * s' Is generated» where $*   Is the result of substituting t2 
for the aoProoriate occurrences (as In case (i)) of tl In a'. 

Note that for tl to occur In a term s any occurrence of a free 
variable in tl must not be bound in s. Also see the caution on 
occurrence numbers in Section 3,6. 

ExampIe: 

125 CXX.F(X)3 c G(F(X>,F(X)) (2 3) 
I     
126 F(X)   r   X      {5   1) 
^••••SUBST   26   Occ  1   IN   25; 
127 CXX.r(X)3   s  G(X.F(X))     (2  3  5  1) 
I»*»*»SüRST   26   IN   J25JR5 
12«     C(Fm.F(X))   =  G(X,X)      (5   1) 

SIMPL  (<steoname>l<term>) l,..( (BYIWÜ) .,.»<range>,..„ )1_. j 
In the case of an <steoname>> its <wff> Is simplified 
(see Section 3.5) using as simplification rules those In 
SIMP5ET together wltH those designated by the <ptnge>-|i8t 
following each "PY"» a^d without those designated by the 
<ran3e>-list foj owing each "WO", A <term> t is similarly 
simplified» to tl say.  and  t = tl is generated, The SIMPSET 
remains unchanged, 

Example» continuing the previous (Section 3.5 gives more detail)« 

29 CXP,P-»F(X),Y](TT) 
♦••••SIMPL - 3Y 26; 
30 XcjU  (10 5 1) 

UU(X)  (10) 
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This hapoens because CONV, CONDT, MIN2 are among the 
slmplIfIcation rules, 

3,3  Goal-Oriented Commands 

Anytnlng probable witr, the goal oriented commands Is provable 
In PURE LCF, but most proofs would then be tedious (that's why we 
only describe the INJDJCTION and CASES rules in goa I-or lented form). 
Experience shows t^at *»lth the 90a I' or i ented commands the user has 
only to type a small fraction of what he would otherwise have to 
type. 

The user may generate a subgoal structure of arbitrary depth. 
This structure Is represented by three entities, GOALTREE» COALLIST 
and THISGOAL» THISGOAL is always the goal currently under trial, all 
its ancestors In COALTREE are (Indirectly) also under trial, the 
subgoals of THISGOAL are listed In GOALLIST, Each goal has a goal 
number - eig, *1«2*3 - wnich indicates its ancestors and <by the 
number of parts) Its level In the tree. Here is a sample goal 
structure, 

LEVEL 0 • ) 
 I       ) 
III) 

LEVEL 1      «!•    «2*    *3e      ) 
I ) 

LEVEL 2 •*2*l )     GOALTREE 
 I  ) 
I I ) 

LEVEL 3        •*2#1#1        •#2#1#2 ----THISGOAL 

•      •      •   GOALLIST 
«2*1*2*1       §2*1*2*2     #2«1*2#3 

FIGURE 1 

Each goal has a status (not shown In diagram) which Is either 
••UNDER TRIAL" (only THISGOAL and Its ancestors have this status), Or 
••NOT TRIED" or "PROVED". 
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The user has five goal orlantecj commands available:  we give 
first their syntax« then detailed descriptions, 

COAL <wff> ?(ASSUME|SASSUMr) <wff> j 

TRY ?<lnteger> ?<tactic> ; 

QED ?<st«pname> : 

ABANDON ; 

SCRATCH <|nteger> ; 

<tactlc> ::= CONJ  I 
CASES <t»rn>   I 
ABSTR  I 
S1MPL ?_..( (BYIWO) .,.,<steDname>#._ ).__ | 
SUBST <stepnanio> ?<OCC __,i<lnteger>( >  I 
INDUCT <stspnane> ?(0CC _,.,<Integer>,  >  I 
USE <ldentlfler> ?...#<Instantiation^__. 

<Instantlat|on> 8Ja <identifier> * <tern> 

The GOAL command, 

GOAL specifies a new goal to be added to GOALLIST, Its effect on the 
goal structure of Figure 1 is s follows (Figur« Z)i 

m      m      .,      m      m ) 

----- )   ROALTREE 
 I  ) 
I < ) 
• •#2#1#2 ----THISGOAL 

I 
-  » '-.   -    -  . 
II I       I  GOALLIST 
•      • •      • 

«2#l#2iM 

FIGURE 2 

(Notice that the new goal Isn't yet under trial) 

A goal rray 3r may not be given assumptions. The only difference 
between ASSUME AND SASSUME Is that In the latter case» when the goal 
is tried»  the assumption wff  wjn  bo added to the  set  of 

■ 
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slmpllfIcttlon  pules  (See Section 3.5)  for  the duration of thl. 
goal's trlel,  Cxamoles: 

(»••••GOAL FeC| 
INEWCOAL *1 FcG 
^••••GOAL F(x)sG(Y) SASSUME r=c, X=Y; 
INEWGOAL *2 F(X)=c(y) SASSUME F=G, X=Y 

The only purpose of the system's reply Is to allot the goal a number. 

The TRY command, 

TRY specifies one of     the goals of  COALLIST to be tried (If the 
<integer> Is absent, the last goal specified is assumed), if the user 
gives no tactic, the new GOALLIST will be null (Figur« 3>, 

I I 
•#2«1«2 COALTREE 

I       I       I 
•      •      • 

THISGOAL 
I 

(COALLIST Initially nulI) 

FIGURE 3 

But ''the user g|ve9 a tactici the system win set up a new 
If  lull .^osanumber of mempers depends on the t.otlc. T.c 
described later In this section,put look ftt  the Examp|e  f 
OED's description below to see what happens without them. 

new GOALLIST 
tips «re 

lowing 

The QED command, 

OED Indicates that the <8tepname> - or previous step 
proves THISGOAL; the user 

no <8tepname> 

goa 
eo 
th 

i !T:2 fMI5büAL; the user will normally say QED when he TRIED this 
!.  ?0 tact,c. Sometimes the user has been able to prove a 

J ^Si^i0^!1:?' .any of th« <»wff>s <tv>=<tv> or <tv>c<tv> where 
e <tv>8 are distinct members of <TT,UU.FF) and In the case of e the 
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The  following  example  continues  the one above,  and 
lustrates T9Y and 9f0, aoov»,  «no 

TRY  2. 

HI   x   f   V       14) )     Th0   SySt8',1  fflak98  the   •ssumotlons. 
I 
|»»»«»APPL 13,X; ) 
111  F(X)=GCX)  (U) ) 
I > 
l»***#APPL 0,141 ) 

116 G(X)=G(Y)  (14) )  The user proves the goal. 

'•••••TRANS 15,16 > 
117 F(X)=G(Y)  (13 x*) > 

| ) 

IGOAL 42   PROVED.  SACK UP TO TOP LEVEL. )  The Sv«f.m 
IREMAIMNG SUBGCALS: '    ™*  Jy8t«',, 

II  pec '  bacKa UDi 

The ABANDON command. 

^SGSALind,?;teS ^at ^ ?88r d0esn't ,,ke h,s <""*"    trial .of THISGÜAL.   The  effect will be to restore Figure 3 to Flau.« 9 . w..* 
the status of »tn#|«| becomes again "NOT TRIED"  Thus  no  furthiP 
backing up can haocen, s  no  ^fthir 

The SCRATCH command. 

SCRATCH removes the Indicated goal from GQALLIST. However, thi ^,1^ 
will refuse to scratch goals generated by tactics. 



21 

Tact ics 

we now descr;be the tactics availaole. There are six basic 

ones, each Oased on a particular inference rule; In addition the user 
may employ any THEOREM (see section 3.7) as a tactic. 

For CON'J, the system jenerates a separate  subgoa 
<awff> In the goa I , 

for  etch 

For CASES, If s Is the <tern> and P is the <wff> of the goal, 

the system generates the ! subgoals P SASSUME ssTT, P SASSl'ME 8 = UU. P 
SASSUME srFF. 

For ABSTR, t^e system instantiates in each <awff> In the goal 

for as irany bound varlaoles as are bound by the outermost X In Its 
left-hard side, thus generating a single new subgoal, New variables 
are chosen which are not free In the proof so far. For example, If 
the goal Is CxX Y.F(Y,X)J = CxiJ.5(2.2)] , and X is already free In 
the proof, the new goal will be F(Y,X1) = G(XltXl,Y), 

For SIMPL, the system generates a new subgoal by simplifying 
the goal as far as possible, using E, modified SIMPSET (If any "BY" or 
"WO" Is Present) as explained in Section 3.2 under the SIMPL rule. 
The nroQifled SIVPSET remains in force, but the old one will be 
relnstatea when the new goal is either proved or ABANDONed (see 
section 3.5), If the sVstem olscovers that all <awff>s of the new 
subgoal are Identically true - I.e. they are all of the form scs or 
sis or UUcs - It initiates the backing up process described under OED 
above instead of generating the subgoal. If some but not all of the 
<awff>s are Identically true they are simply omitted from the new 
subgoaI. 

and the second is 

'r3{t{y'/y)/s) ASSUME P(y'/s> 

where y' Is a variable not previously used free, and where the 

substitution In p takes place at appropriate occurrences, exactly as 
for SUHST above. 
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For USli the <HBntifier> Is a THEOREM name, The system w||| 
instantiate tht THEftRC« by matchirg its consequent to the goal. 
taking into account any instantiations supolled explicitly by the 
Lis«?r. and will sin«rfiti> tie appropriate instance of Its antecedent as 
a net* floal. bee section 3,7 fcr a fuller discjsslon of THEOREMS, 

we now give examples of each tactic (except  CONJ,  which  Is 
tasy to understa^l).  Some are realistically combined. 

-I«*»»<K
:
O;L =-X.P-*V.E E F-X»Z; 

lNt.WG0AL ni   P^X,P-«Y,t = P-»X,H 
I 

^|#»*»*TRY CASES P; 
INEWGOAL »1#1 PHX.P^Y,? = P^X,£ SASSUME P=TT 
iNEl-iGOAL telil2   P-XfF'*Y,2 = P^X,2 SASSUME P = UU 
INEWGOAL «US P^X,P^Y,i': = P-X.d SASSUME P=rF 
I 

«|#t###TK,V l SI^PLJ 
125 PiTT (2^) ) Hepe slMpL reduCaS got| 
26 P^.p.y,? = 9^,-i   (?5) ) il#i to Identity, using 
loUAL «i»l PROVED.  BACK UP TO GOAL «1  ) 25 ana also an instance 
IREMAlhlNG 3^r.CALr: ) of CCNOT as simp, rules, 
II P* ?  SASSUME P = JU 
13 P- 2  SASSUME P = FF 

■.i#»♦»•!.jy ? sr4PL; 
i(etc.) 

The example looks long, out the users contribution (shown by 
"■►") is s^ort. (The system keeps reminding the user of what subgoals 
remain,) The "hard copy" proof proouced by the SHOW command will be 
comparatively short, 

The  nnxt example illustrates the remaining tactics, and also 
apolication to a particular subject matter - lists.  The  first four 
steps are  the  result  of  SASSUME  oy  the  user.  Note also the 
aborevlations VX Y, etc.. as explained In section 3.6. 

11 
12 
13 
14 
I 
I»*»**MSSUME AP = «F,XX Y.NULL X-Y,CONSCHO X,F(TL X,Y))J 
15  AP E [«F.CXX Y,NULL(X)-.Y,C0NS(HD(X),F(TL{X),Y))]3  (5) 

YX Y. MC?(C:NS(X.Y)) = X  (1) 
VX Y, TL{C0NS(X,Y)) = Y  (2) 
VX Y,'JLJLL(CO\'S(X,Y) ) = FF  (3) 
NULL(UU) = UU  (4) 
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 nxp 5; 
6 AP £ CXX Y.NULL(X)-.Y,CÜN5(HD(X),AP(rL(X),V))l  (5> 

•»♦«•GOAL V^.AP(X,AP(Y,c)) = AP(AP(X#Y),Z); 
NEUGOAL «1 VX.AP{X,AP(Y,2)) = AP(AP(X,Y),2) 

«*#«»TRY INDUCT 5 OCC 1.4; 
NF.WGOAL »1UX   VX.JU(X, AP(Y#2)) i AP ^ UU ( X, Y ), ? ) 
NEWGOAL #1#2 VX.CXX Y . NULL ( X )-»Y , CONS ( HO ( X ), Fl ( TL ( X ), Y )) ] 
(X,äP(Y,2)) 
= AP{CXX Y.NULL(X)-Y,CONS(HD(X)lri(TL(X),Y))](X,Y),H) 
ASSUME! vX.ri(X,AP(Y,E)) = APCFKX.Y),?) 

♦•»••T^Y 1 ABSTR; 
NL^GOAL »liiil UU(X,AP(Y,Z), = AP(UU(X,Y)I2 

»»•##TRY SUBST 6 OCC 2; 
NEWGOAL #l#l#i#l UU{X,AF(Y,Z>) = 

CXX Y.MULL(X>-.YlCONS(HD(X),AP(TL(X),Y))3(UU(X,Y)»Z> 

♦•##tTRY SJMPL; 
7 UÜ{X,AP(Y,Z)) = CXX Y.\ULL(X)^YlCONS(HD(X),AP(TL<X),Y))] 

(ÜU{X,Y),Z)  (4) 
GOAL »UX*i*i   PROVED.  BACKUP TO GOAL #1#1#1.  NO MORE SUBGOALS 
6  UU(X,AP(Y,H)) = APtUU<X,Y).i)  (4 5) 
GOAL #l#l#l PROVED.  BACKUP TO GOAL #1*1.  NO MORE SJBGOALS 
9  vX,UU(XlAP(Y,2)) i APJUUCXiY)»!)  (4 5) 
GOAL «1«1 PROVED.  BACKUP TO GOAL #1. 
REMAINING SU3G0ALS: 
2  (Here follows a restatement of goal #1#2> 
(etc,) 

rule 

grou 
I der 
each 

shor 

(rea 
of 
cour 
sues 
f rea 
suff 

NO 
s CONV 

rds, 
tical 
goa I 

NO 

t in t 

Fl 

a sect 
the i 
se, T 
tant ia 
uent 0 
Iclent 

te t 
and 

to  i 
In b 
to 

Drove 

te |l 
he ab 

na Ijy 
■ on 3 
nf ere 
HEORE 
I r 
ccurr 
1 by 

nat sinpIif'cat I on (using 
MIN2 and CONDU as we II 
dentity» and the system 
ackinn UP» it generates 
the goal statement in Its 
d. 

the built-in sImoIifIcat1 on 
as  Step 4)  reduced goal 
generated step 7 on these 
an  exp licit  f Ina I  step, 

wff, to tie up the proof of 

so that the user's contribution (Indicated by W*M5 is 

ove example. 

1 here is an example of a THEOREM used as a tactic 

,7 first;). It also shows how the user can make many 
nee rules into tactics - even using the same names, Of 
HS used as tactics wjll at least as often be 
esults previously proved ana filed (consider the 
ence In informal proofs of Mto prove XXX It Is 
Theorsm AAA, to prove YYY and HZZ"). 
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first» to make a THFOREM out of the TRANS pule: 

l»»»»»ASSüME X=Y, YiH; 
151 X-Y  (bi) 
152 Y=2  (52) 

•»••♦TRANS --,-; 
91 X|i  (5i 52) 

• •♦••THEORr"! TRANS: 53 
THEORF:M TRANS: X=H ASSUME X=Y,Y=E; 

'Jow to use TRArjS as a tactfc: 

1 GOAL F(A»X)sG<X); 
INEWP.OHL #1 F(A,X)=G(X) 
ITRY USE TRA^S Y«-H(X,A); 
iNCWrOAi ti$X  F(A»X)=H<X,A) 
INEWFOAL #1#2 N(X,A)=G(X) 

Mote that thr y.Y.Z nf |hi THEOREM are metavariables which do not 
conflict with the variables of t^e proof. 

5,4  M i «je« ' '»rn'Ous Cornnands 

The SIMRbET conMapri, 

SIMPCET ,..{ (+I-) ,._,<range>,... ),__ ; 

The ste^s das i «Jnated are adoec to or removed from the set of 
sinpI•fication rules (See section 3.5), 
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The  SHOW   coMiiiand, 

SHOW 

(   AXIOMS 7< ( „.^iae'Hif ier>.._. ) ) I 
THEOREMS U   ( .„.^Ident'f iep>,,   ) ) I 
GOALTREE ?.<,.»<rangB>,.   | 
THISGHAL j 
GCALLIST I 
PROCr ?.__.<Pan39>i... I 
STEPS ?_..,<Pan9«>i„_ I 
SIMPSET ?...,<range>,_.. 
LABELS ?-...<range>,._.   ) 

?< <ldentif («'■> ?<lnteBer> ) ; 

n t^e final <ldent!fi9r> Is opesent tne material Is sent to the file 
nameoi otherwise it is disDlayed on the console. The final <lnte9er> 
if present denotes the line-width. 

If a <range>- cr <ioent I fIer>-I!st Is not oresent, the whole Is 

shown, The < I dentif ler>-I Ist for AXIOMS op THEOREMS denotes the 
particular axioms or theorems reaulped, The <range>-|ist for GOALTREE 
refers to levels (z is too level), and for PROOF, STEPS, SIMPSET end 
LABELS refers to steonumbers, Thus 

SHOW STEPS :3I 8, 2(5:23, 30, 55| j 

will show steps 1,2,3,8.2)3,21,22,23,30 and 55 onwards of the proof, 

with no goal structure; SHOW PRCOF will show steps with goal 
structure, so Is normally used with a single <range>, or a whole 
oroof. Only the steonumbers bound to LABELS are shown. 

The FLTCH command. 

f'ETCM -..,<|dentlf ler>,_.. { 

The <ioentlfIer>-1 ist names files, Axioms and theorems on those 
files w||| oe brought In, In fact any admissible commands on these 
f,|fl9 ^'1' b« treated exactly as if typed at the console - e.g. 
ASSUMptions may be made - so the user may prepare such flies other 
than by SHOWING axioms or theorems. Much of what a user types Is 
dependent on the steonumbers th^t the system is generating, so the 
use of files preoared offline is limited. However, this difficulty ts 
somewhat alleviated by the LABEL command (see below), The files are 
exoectec to be sinpIy sequences of commands» so several files may 
easily be concatenated without editing, 
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The CANCTL command. 

CANCEL ?<steDname> ; 

encountered  «;,,   be^oSred     iTII «M'JLJ!?  S!MPSET'   Goa,   tr,•,9 

-^ny tttp  which proves  a  goal. Possible  to  cancel   back oast 

The   INFIX   command, 

IWI*  .,.,<|aentif ier>,_,„   ; 

Tne PRFFIX command, 

PREnx ,_.<Identlfl«r>,.„ , 

This  revokes  the  jnf;x status of all <id.n*jf.. N 

The LABEL command, 

LAflEL -..,<!dentifler> ?<steoname>,..- | 

- 

-• 
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3.5 SlmpiIfIcatlon Rules. 

i  ..-.At .'ny sta9e  'fl * Proof,  thipt  is a current  sst of 
smplfIcatlon rules.   Steps may be added to or removtd from tho 
simplification rule set (SIMPSET) In five ways) 

e By SASSUME (See Section 3.2) 
• By tht SIMPSET command (see section 3,4). 
• By the goal tactic SIMPL (See Section 3.3), 
• If the SIMPSET was modified oy attacking a goal 
with a SASSuMptlon (see section 3.3) or by 
using the SJMPL tactic» then it will be automatically 
reinstated when the goal Is proved or ABANOONed, 
• By CANCEL (see section 3,4). 

Simplification  Is  invoked only by the SIMPL rule, (3.2) and by the 

SIMPL tactic (3,3),  The rules are then applied  repeatedly  to all 
subterms of the aporoprlate awff or term until they can be applied no 
further, 

An aopllcation of a simplification rule s = t consists In 
finoing all occurrences of s and replacing them by t (so the user 
must be careful not to make something like F(X)s C(F(X)) a 
simplification rule, or he will cause Indefinite expansion!). In 
addition, in the case of a simplification rule Vx y ,., , s = t » ail 
Instances of si gained by replacing x,y#.,. by arbitrary terms in s, 
will be replaced by the appropriate instances of t. 

There are five built in rules: CONV (X-CONVERSION), MIN2 
(UU(8) £ UU) and CONDT, CONDU, CONDF (simplification of conditionals) 
(see these rules of Inference In 3,2), Together with the previously 
mentioned feature, this w||| allow the assumption 

VX Y.HD(CONS(X,Y)) i X , 

when used as a simplification rule, to reduce 

HD(C0NS(sl,s2)) 

via CXX Y.X3(sl»s2) 

to si . 

Such formulae may usually be kept oermanently in the SIMPSET. Others, 
notably the SASSUMptions of the CASES tactic, will com« and go under 
system control. Still others the user will need to handle hlmselfi a 
gooa example Is the result of FiXP on a recursive definition of form 
s = C«x,tp - the result has form s 5 t(s/x) and so can lead to 
indefinite expansion as a simoI IfIcatIon rule, but wi|| not do so In 
the ease that the recursive computation, which It will carry out, 
terrrlnates as a eonseauence of other members of SIMPSET, 



■^tu  Syntax 

AS *ell if t^e usual $Hf   conventions we use the following: 

(   ) ar* for Croupind s>ntax patterns. 
V oefore a pattern means optional, 

-..P.—  neans one or nore instancos of th« pattern P, 
 --- ^eans onj cr mf9   instances of P separated 

hy co-nmas, 

«;wf f> : := .__, <awf f >f _._ 

<awff> n. ?___{ V „..<Identif!er>,,.. | <term>J: )__ 

<term> (=|c) <tarii> 

<term> ::= <infixtern>KcondItionaIterm> 

<conditiona|term> ::= < inf i xterrT,> - <term> , <term> 

<inflxt6rm> ::= <slnpiet«rm> ?._.(<Infix><simp Ieterm>}... 

<slnp|eterm> ;:= <cloSedten> tmmmi   <c I osedterm> | 
( -,_'<term>#___ ) )  

<cloSedterm> :;= < I dent i f i er> l<Xterrn> |<«term> l<termname> I 
(<thrm>) 

<|tffllfii«0   ;:«     ?(   :Gl:<stepna'ne>   )   ?(   J<inte8er>   )   CLllR) 

<Xterm>   ::=   c   X  .._< I dent i f I er>._.   .   Ct«f<t>   2 

<oterm> ::= [ a  <(dentifier> . <term> : 

<identlfiar> ;:= <word> I !<lnfix> | « ( | 

<word> ;:= .__ (< I etter> l<d i 3 i t-> I   ) 

<inflx> ::= any of t^e single characters 
nUj|+-»*AV/\*».<><>^B«T4 

or any <word> w|th current INFIX status (3,4) 

Spaces rray occur anywhere «xcept within a <word>, but are only 
necessary to separate <wor?>3 or to separate "." from a dlolt 
(e.s. Ir "Vx. .^x = TT" ). The latter is because the MIISP? 
narser takes ",3" as a single element op token. 

The brackets round <Xterm>s anc <«term>s may be omitted when 
no airblguity ar Ises. 

Exarrples follow, with Intended Interpretation: 



• P-Q-»xrY,R^Y,£   is a <cond!tIonalterm># abbreviating 

P-(O-XiY)»(R-Y.H) 

• AP(AP  X   Y,Z)        is  a   <siinoleterm>,   abbreviating 

AP(AP(X,Y),2)   or   AP((AP(X)>Y,Z) 

or   (AP(<AP(X))Y))2 

(Thus the type which we should associate with 
AP is (^«(P-P)), where 0 is the type of 
individuals.} 

• XX Y.NULL X^Y.TL Xp  is a <Xterm>, abbreviating 

CXX.CXY.(NULL(X)^Y,TL<X>)]] 

• P :: X = Y   Is an <awff>, abbreviating 

P-»X,UU = P-Y,UU 

• VX, F{X,X) = Y   Is an <awff>, abbreviating 

XX,F(XiX) = XX.Y 

• VX Y, X=Y :: X E Y   is an <awff>, abbreviating 

XX Y.X = Y-*X,UU = XX Y.XsY-'Y.UU 

• U = XX L. X=HD(L)-TT, X6TL<L) 

Illustrates the "r'-ing (which may pronounced "shrieking" 
or perhaps "howling") of <infix>esi which Is necessary 
whenever they are mentioned in a non-lnflxed context. 

Many examples of <wff>s and <awff>s occur throughout this paper. 

Caution!! Some commands refer to occurrences of a <term> in a <wff>. 
Occurrences are counted from left to right after aM occurrences of 
wnM (which Is an abbreviation for legibility reasons only) have been 
expanded as indicated in the examples» and with <infix>es considered 
as prefIxed. 



3,7  Corrnanrls for Axions and Theorems 

WV!K-aesCp,b9 ^^ the usor may «'••«te, store away, and fetch axioms 
and theorems, so that he can build us a file of results »V§* »"tpll 
ü^'!?8. 0n  th8 COmr,ute,,•  8"d does not have to start from scratch 

we start with a i|ne|| example, and then describe the new commands In 
aeta I I , 

 AXI0M LISTS: VX.NULL X :: x = NIL,.,.; 

i,J-2**!er rreates an a^lon consisting of several 
<awff>s:  the example uses only one. so the others 
are represented by ---.  The system lists them 
for him - as new steps - and w||| remember the 
Icollectlon by its name: - LISTS. 

AXICM   LISTS 

1 -   -   - 
2 -   -   - 
3 vx,NULL(X)   ::   x   =  ML 
4 -   -   - 

•••••SASSUME   NULL   YrTT; 
5 \LLL(Y)iTT     (5) 
••♦»•APPL   3,Y; 
6 CXX,NULL<X)*X,UU3(Y)   =   CXX,NULL(X)*NIL•UU3(Y) 
•##««SIMPL «; 
7 YiNIL  (5) 

!Note that the SASSUMption 5 has been used, so 
lit appears as a condition for 7. 

••»••THEOREM UNIQUENULL: 7; 

iThe user wants to keep the result 7 - he will be 

Ibe able to Instantiate for Y In later use, so the 
jsystem really treats It as a metatheorem.  The 
Isystem writes It In full for him, reminding him 
Ithat It depends on LISTS:- 

THECREM(LISTS) UNIOJENULL» Y=ML ASSUME NULL<Y)=TT 

Suppose that the user proves some more theorems, 
and then wants to keep nls axioms (there may be 
others besides LISTS) and theorems.  He says; 
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»SHOW AXIOMS ariLCj 
»SHOW THEOREMS THFILEJ 

|H« can actually select Just some to be ktot (3.4). Also 
I If ha omits t^e fllenane. t^ay will not be kept 
Ibut displayed. 

NOW, ON SOME LATER OCCASION: ■•• 

ITha user decides he now wants to talk about llstsi 
land would like the theorems that ha opavlously orovad, 

 FETCH AXFILE, THFILEJ 
AXIOM LISTS 
15 - - - 
16 - - - 
17 VX.NLLLCX) 15 X = NIL 
18 - - - 

THEOREM (LISTS) UNIQUENULL: YsNIL ASSUME NULL(Y)=TT 

iRemembar there may ha^e bean other axioms and 
•theorems on these files (they should have baan 
lat least reoresented by •••, out we didn't 
Ibother). 
I 
iThe crucial point Is that all variables which 
lare free In t^e theorem, but not free In the axioms 
Ion which It depends» may be instantiated, and the 
luser can force an Instantiation by using the theorem 
las an Inference rule.  Suppose later ha proves (step 23)1 

23 MJLL(H0(2))=TT  (15 18) 

iHe applies the theorem, as follows (and In this 
lease the only free tnstantlable variable Is Y)l 

•••••USE UNIQUENULL 231 
24 HD(2)iNIL  (15 18> 

lit Is possible that not all the Instantlabia variables 
loccur In the hypothesis of the theorem!  the full 
Ideflnftlon of the USE command shows how they may 
Ibe Instantiated. 

■i... „i... 
i ■• WB.*-VJ^„CJIH.,

U'«I1«UUU 



we row give the new commands which concern axioms and theorems! 

The AXIOM command. 

AXIOM <ldent'fier> :  i{<5teDname>Kawff>),  j 

The system will re^e^ber all the <awff>s» mentioned explicitly or 
deslgnatad by an <steDna,ne>, by the name < i aent i f ier> J tt also lists 
therr - each with a new stapnumber. Thereafter, any THEOREMS created, 
and saved by the SHOW command, will be tagged as dependent on this 
ax!or. 

Thfi THEOREM command. 

THEOREM ( <i 

?( 
<ide 

The  first  option 
<stepnafre> - as a th 
explicit  sentence - 
saying what axioms i 
list of ax lorn names) 

In the first opt! 
and tag It as depend 

In the second option 
are present (If no 
the theorem by name, 
This option is Used 
THEOREM on a file us 
thp file Is precise 
the user FETCHes the 
any appropriate ax 
ther, too. 

dantifler> : <stepname> I 
<     --,»<ldentifier>,_..  ) ) 
nt!fier> : <wff> ?( ASSUME <wff> ) ) j 

is  for  naming a proved 
eorem.   The  second optio 

i .e. <wff> ?( ASSUME <wff> 
t depends on (the I Ists of 

on, the systen will remembe 
ent on all axioms orasent I 

, the system wljl check tha 

t it wt M warn you) and in 
and tag it as dependent on 
by the system as follows. 
Ing the SHOW command, what 
ly an Instance of the secon 
theorem on a later occasio 
io"s that are not oresen 

result ' designated by 
n  is  for  naming an 

) - as a theorem, and 
<ident;fler>s  is a 

r the theorem by name, 
n the system, 

t the axioms mentioned 
any case win remember 
the axioms mentioned. 
when the user saves a 

the system writes on 
d option, so that when 
n he wiI| be warned of 
t so that ha can FETCH 
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The USE oommand, 

USE <ld«ntlfl«r> ?._.,<steDnatni>.... ?< . ...#<ln8tintl»t,on>».-- ) I 

<InsttntiatiOn> :«s < i'Unt I f l«r> - <frr\> 

The first <ldenttfler> must be a THEOREM name, and the system cheeks 

that all axioms o" which It depends arc orestnt, The system treats 
the theorem as a metathaorem in that all Its frta variables» axoeot 

dtoands» ara traatad as 
user  supDllts  the 

the 11st of <ste8name>s 
of the metavarlabjes 
antecedent list of the 

those which ar« free In aKioms on which It 
metavariables to be Instantiated, The 
Instantiation In oart In two ways, First» 
deslsnatas a list of <awff>s, and some or all 
are bound by matching this list to the 
thecram. 

Second (since there may be metavariables which occur only In the 

consequent of the theorem) the user may alve a list of Instantiations 
each of which binds a term to a metavariable. 

Any iretavar lablas not thus Instantiated will Just 
stanö,   Aftar  matching,  the  USE  command will 
which Is simply the aporoprlate 
the theorem,  Examojei 

nstantlatlon of 

be left as they 
generate a new step 
the eonseouent of 

••••♦AXIOM AXl; 
AXIOM AXl 
1 X = Y 

X = Y; 

>THE0PE^   UXX)   THl:   P = E   ASSUME   isRl 

15 F(Y)=G(XiY)   (2   6) 

 USE   THl   15.   P-H(X)} 
16 H{X)=F(Y)    (2   6) 
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A,     JtOW TO USE THE SYSTEM LCF 

4,1  Initialization and Termination 

R LCF 

The system returns with an asterisk:  you are now talking to LISP, 

(INIT) 

This will Initialize the system,which returns with 5 atttrlsksi you 
are ready to generate a oroof by the commands of Section 3, 5 
asterisks Is always the signal fcr a command. Rememberi all commands 
end ** I th a semi colon, 

To flnlsn a oroof (aftap maybe Dreservjng It on a file using 
SHOW) type 

It 

The system will tyoe ENDPROOF and you are then ready to start another 
oroof with 

(INIT), 

It Is possible to save your core image so as to  resume the 
oroof at a later time. To do this tyoe 

tC 

SAVE <f I lename> 

and you can than either continue immediately by 

START 
(RESUME) 

or at a later time by 

RUN <f I |ename> 

(RESUME) 
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4,2  Errors and Recover: 

There are thre« tyoes cf error message: 

• If you cofrinit a syntax error In a command, the system says 

SYNTAX ERROqj TRY AGAIN 

• If your command Is semantlcally susoeot - for examola« you 
try to aooly TRANS (transitivity) to two steps for which It Is 
inapDroorlate - vou will get something like 

NASTYTRANSJ TRY AGAIN 

• If you break the system  somehow and  get 
usua I ly someth Inn Ii ke 

3246 ILL MEM REF FRO"! ATOM 

a LISP  «rrort 

then you can try something different (your first command may yield a 
syntax error, In which case Just repeat It) ; however, this should 
not occur and Malcolm Newey or I would like to know how It occurred, 

If  the  sYstem gets Into a looo (the only known cause Is If 
yojr SIMPSET allows Indefinite expansion) then 

START 
IRESUML) 

will  restore  you,  If  ycü thereby  abort  a  (long or   looping) 
simp I ifIcatlon  Invoked  by  the  SIMPL  tactic you will also need to 
ABANDON. * 
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